
10) $\left[\frac{(y+1)^{2}}{(-y-3)^{2}}=1\right](y-3)^{2}$

Domain: \mathbb{R} except $\{3\}$
$(y+1)^{2}=(y-3)^{2}$
$(y+1)(y+1)=(y-3)(y-3)$

$$
\begin{aligned}
y^{2}+2 y+1 & =y^{2}-6 y+9 \\
8 y & =8 \\
y & =1
\end{aligned}
$$

$\{1\}$
18) $\left(\frac{1}{x+1}-\frac{1}{x+2}=\frac{1}{2}\right)^{2(x+1)(x+2)}$

Domain: \mathbb{R} except $\{-L-2\}$
$2(x+2)-2(x+1)=(x+1)(x+2)$
$2 x+4-2 x-2=x^{2}+3 x+2$
$2=x^{2}+3 x+2$
$0=x^{2}+3 x$

$$
0=x(x+3)
$$

$\{0,-3\}$
19) $\left[\frac{u}{u-2}+\frac{30}{u+2}=9\right](u-2)(u+2)$

Domain: R Rexcept $\{ \pm 2\}$ $u(u+2)+30(u-2)=9(4-2)(4+2)$
$u^{2}+2 u+30 u-60=9\left[u^{2}-4\right]$

$$
\begin{aligned}
& u^{2}+32 u-60=9 u^{2}-36 \\
& \frac{0}{8}=\frac{8 u^{2}}{5}-\frac{32 u}{8}+\frac{2 y}{8} \\
& 0=u^{2}-4 u+3 \\
& 0=(u-3)(u-1) \\
&\{3,1\}
\end{aligned}
$$

21) $\left[\frac{2}{x-1}-\frac{x}{x+3}=\frac{6}{(x+2 x-3)}\right](x-1)(x+3)$

Domain: Rexcept $\{-3,1\}$
$2(x+3)-x(x-1)=6$
$2 x+6-x^{2}+x=6$
$6-x^{2}+3 x=6$

$$
\begin{aligned}
& 0=x^{2}-3 x \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0=x(x-3 x \\
& 0=x(x-3)
\end{aligned}
$$

$$
\{0,3\}
$$

27) $\left[\left(\frac{x-3}{x+1}\right)^{2}=2 \cdot \frac{x-3}{x+1}+3\right](x+1)^{2}$

Domain: \mathbb{R} except $\{-1\}$

$$
\begin{aligned}
(x-3)^{2} & =2(x-3)(x+1)+3(x+1)^{2} \\
(x-3)(x-3) & =2\left(x^{2}-2 x-3\right)+3(x+1)(x+1) \\
x^{2}-6 x+9 & =2 x^{2}-4 x-6+3\left(x^{2}+2 x+1\right) \\
x^{2}-6 x+9 & =2 x^{2}-4 x-6+3 x^{2}+6 x+3 \\
x^{2}-6 x+9 & =5 x^{2}+2 x-3 \\
\frac{0}{4} & =\frac{4 x^{2}}{4}+\frac{8 x}{4}-\frac{12}{4} \\
0 & =x^{2}+2 x-3 \\
0 & =(x+3)(x-1) \quad\{-3,1\}
\end{aligned}
$$

28) $\left[\left(\frac{t+3}{t-1}\right)^{2}=2+\frac{t+3}{t-1}\right](t-1)^{2}$

Domain: Rexcept $\{1\}$

$$
\begin{aligned}
(t+3)^{2} & =2(t-1)^{2}+(t+3)(t-1) \\
(t+3)(t+3) & =2(t-1)(t-1)+t^{2}+2 t-3 \\
t^{2}+6 t+9 & =2\left(t^{2}-2 t+1\right)+t^{2}+2 t-3 \\
6 t+9 & =2 t^{2}-4 t+2+2 t-3 \\
6 t+9 & =2 t^{2}-2 t-1 \\
\frac{0}{2} & =\frac{2 t^{2}-8 t-\frac{10}{2}}{2} \quad\{5,-1\} \\
0 & =t^{2}-4 t-5 \\
0 & =(t-5)(t+1)
\end{aligned}
$$

